

Instrumentation numérique

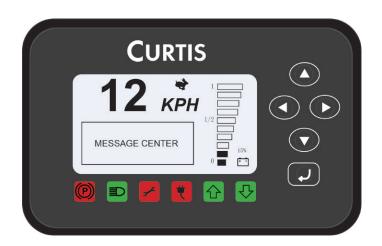
Modèle 3501

Instrumentation numérique

Le modèle 3501 de CURTIS est un tableau de bord à microprocesseur qui peut être personnalisé pour surveiller, afficher et commander de nombreuses fonctions du véhicule à partir d'un seul boîtier intégré. Le tableau de bord est totalement compatible avec la norme CANopen. Véhicules industriels électriques et à moteur, y compris les équipements de manutention, les équipements électriques et de construction extérieurs, les équipements fixes et les équipements de nettoyage commerciaux.

CARACTÉRISTIQUES

- Instrument totalement personnalisable. Vous concevez votre propre instrument selon les besoins spécifiques de votre application, avec une large gamme de possibilités.
- Fonctions numériques et CAN dans un même instrument. Tous les aspects de gestion du véhicule, de sa commande et de son affichage peuvent être réalisés.
- Communication CAN et SCI avec débit en bauds sélectionnable, ce qui permet une connectivité parfaite avec les autres composants du système tels que les commandes de moteurs.
- Duplique certaines des caractéristiques de programmation des commandes de moteur modèles 1311 et 1313.
- La logique basée sur microprocesseur élimine ou réduit la nécessité d'ajouter au véhicule des circuits supplémentaires, comme les circuits de comptage.
- Un même appareil peut être programmé rapidement afin de créer la large gamme d'instruments dont l'équipementier a besoin pour une variété de véhicules différents.
- Grand affichage LCD à matrice de points, facile à lire et rétroéclairé, pour être visible dans toutes les conditions d'éclairage.
- Horloge temps réel qui peut servir lors de l'enregistrement de données et la datation d'événements en temps réel.
- La tension de fonctionnement est sélectionnable par le menu ce qui minimise le nombre de versions nécessaires.
- Quatre entrées numériques (actives à valeur haute de tension) qui peuvent également être utilisées comme entrées en fréquence ou entrée de code de défaut de commande C.C. Curtis.


Instrumentation numérique

instrainentation namenqu

CARACTÉRISTIQUES suite

- Les affichages peuvent comprendre plusieurs symboles d'avertissement et une ligne de signalisation pour les compteurs horaires, les compteurs d'entretien et l'horloge.
- Cinq boutons métalliques bombés sur la face avant améliorent l'interface avec l'utilisateur.
- La programmation sur site est activée, avec protection par mot de passe, pour le suivi de l'entretien, du temps écoulé et des profils de décharge de la batterie. Cela permet à l'utilisateur d'adapter le tableau de bord à son application spécifique.
- Les alarmes visuelles comprennent 6 diodes LED configurables (couleur et symbole), des icônes à cristaux liquide LCD clignotantes et des segments de graphique à barres. Alarme sonore disponible en option.
- Un transistor FET de 1 ampère est utilisé pour commander des fonctions du véhicule spécifiées par l'équipementier, comme des alarmes, le verrouillage du levage, etc.
- Pour les véhicules alimentés par batterie, la technologie innovante de surveillance de batterie de CURTIS fournit des données fiables sur l'état de charge.
- ► La face avant étanche IP65 (arrière à IP40 avec IP64 en option) assure une bonne performance dans les environnements les plus agressifs.
- Les encliquetages aisés et le connecteur intégré abaissent les coûts de production en éliminant les kits de fixation traditionnels.
- Disponible en boîtier à monter sur tableau ou modulaire pour montage derrière le tableau, ce qui apporte une plus grande souplesse de conception pour l'OEM.
- De conception électronique fiable sans pièce mobile sujette à l'usure.
- Le design contemporain attrayant améliore l'apparence du véhicule et maximise sa facilité de lecture.

Instrumentation numérique

SPÉCIFICATIONS

Matériaux du boîtier et du cadran :

Résine de polycarbonate, noire.

Matériau du cadran:

Polyméthacrylate de méthyle (PMMA), transparent.

Spécifications de module :

Tous les modules sont fournis avec des composants électroniques cruciaux apparents. Si le module est utilisé dans un environnement autre que ce qui est spécifié, il appartient à l'utilisateur de prendre des précautions pour habiller le module de manière à lui fournir une protection suffisante.

Connecteur d'interface principal:

TYCO Mini Universal Mate-N-Lok à 16 broches.

Tensions de fonctionnement :

Détection automatique – $12 \text{ V à } 80 \text{ V C.C.} \pm 25 \% (9 \text{ V à } 100 \text{ V C.C.}).$

Température de fonctionnement :

-40 °C à +70 °C.

Température de stockage :

-40 °C à +85 °C.

Humidité (s'applique aux unités en boîtier seulement) :

95 % humidité relative (sans-condensation) à +38 °C selon SAE J1455, section 4.2.3. Remarque : les limites pour le module peuvent éventuellement être plus faibles.

Chocs mécaniques (s'applique aux unités en boîtier seulement):

Norme SAE J 1378 Mars 83. Amplitude 44 à 55 g, demi-onde sinusoïdale, durée 9-13 ms.

Vibration (s'applique aux unités en boîtier seulement) :

Norme SAE J 1378 Mars 83. Amplitude double de 1,53 mm avec balayage en fréquence de 10-80-10 Hz (20 g maxi) à 1 minute d'intervalle.

Étanchéité (s'applique aux unités en boîtier seulement) :

IP-65 (face avant), IP-40 (face arrière).

Cycles thermiques:

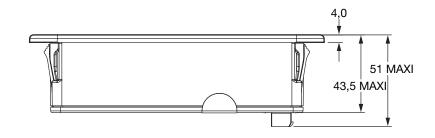
Selon SAE J1455 section 4.1.3.1. à +80 °C.

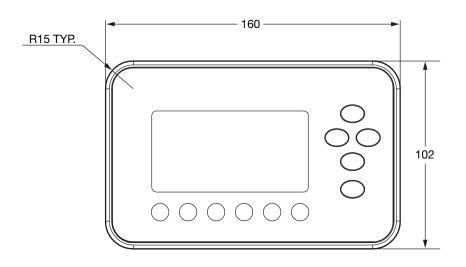
Chocs thermiques:

Selon SAE J1455 section 4.1.3.2. à +80 °C.

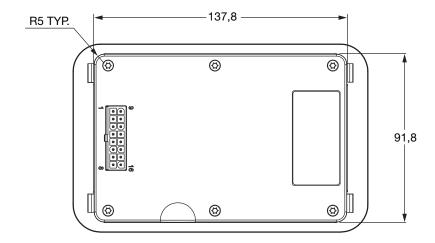
Brouillard salin (s'applique aux unités en boîtier seulement):

ASTM B 117-73 selon SAE J1810, section 4.7.1.2.



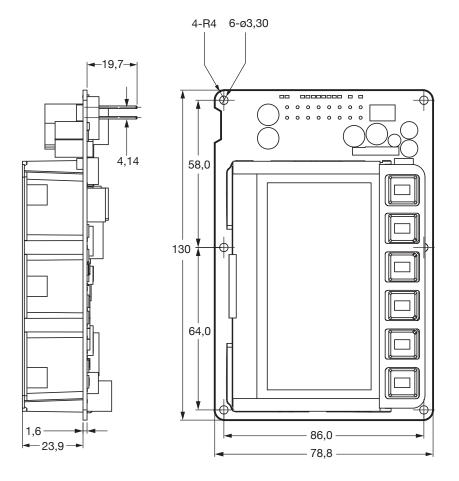

Instrumentation numérique

٧,


COTES mm

Unité en boîtier

Broche	Fonction
BROCHE 1	SCI – Rx
BROCHE 2	SCI – MASSE
BROCHE 3	CAN L
BROCHE 4	Borne CAN_L
BROCHE 5	Entrée interrupteur 1/ Entrée de fréquence 1
BROCHE 6	Entrée interrupteur 3/ Entrée de code de défaut HYD
BROCHE 7	Entrée clé de contact
BROCHE 8	Sortie MOSFET
BROCHE 9	SCI – Tx
BROCHE 10	CAN_MASSE
BROCHE 11	CAN-H
BROCHE 12	Borne CAN_H
BROCHE 13	Entrée interrupteur 2/ Entrée de fréquence 2
BROCHE 14	Entrée interrupteur 4/ Entrée de défaut TRA
BROCHE 15	B-
BROCHE 16	B+



Instrumentation numérique

٧

COTES mm

Module

NOMENCLATURE DU MODÈLE

Couleur du rétroéclairage

Type de boîtier 5 = Vert

T = En boîtier 7 = Jaune

P = Modulaire 9 = Blanc

Exemple Modèle 3501 T B 5 XXX

Position du symbole Numéro

T = Haut séquentiel

B = Bas

GARANTIE

Deux ans de garantie limitée à partir de la date de livraison.

est une marque déposée de Curtis Instruments, Inc.

Les spécifications sont sujettes à modification sans préavis

©2024 Curtis Instruments, Inc.

50278FR REV B 8/24